Gas turbine combustion profile modelling for predictive maintenance using an artificial neural network
نویسندگان
چکیده
Abstract. Dry Low Emission (DLE) gas turbine has been developed as a solution to encounter the harmful high NOx emission from conventional turbine. However, it is prone create Lean Blowout (LBO) error that causes frequent shutdown due its stringent condition needs be operate inside desired operating can monitored through temperature, and CO concentration. This paper develops an Artificial Neural Network – Multilayer Perceptron (ANN-MLP) predictive maintenance model using actual DLE data predict trips exhaust classification of warning stages on LBO error. 94.12% R2 for regression 100% accuracy Python obtained four months period data. proposed ANN-MLP manage suitable time real which help reduce cost lost unscheduled shutdown.
منابع مشابه
Wind turbine power curve modelling using artificial neural network
Technical improvements over the past decade have increased the size and power output capacity of wind power plants. Small increases in power performance are now financially attractive to owners. For this reason, the need for more accurate evaluations of wind turbine power curves is increasing. New investigations are underway with the main objective of improving the precision of power curve mode...
متن کاملAn application of artificial neural network to maintenance management
This study shows the usefulness of Artificial Neural Network (ANN) in maintenance planning and man-agement. An ANN model based on the multi-layer perceptron having three hidden layers and four processing elements per layer was built to predict the expected downtime resulting from a breakdown or a maintenance activity. The model achieved an accuracy of over 70% in predicting the expected downtime.
متن کاملscour modeling piles of kambuzia industrial city bridge using hec-ras and artificial neural network
today, scouring is one of the important topics in the river and coastal engineering so that the most destruction in the bridges is occurred due to this phenomenon. whereas the bridges are assumed as the most important connecting structures in the communications roads in the country and their importance is doubled while floodwater, thus exact design and maintenance thereof is very crucial. f...
Efficient Parameters Selection for CNTFET Modelling Using Artificial Neural Networks
In this article different types of artificial neural networks (ANN) were used for CNTFET (carbon nanotube transistors) simulation. CNTFET is one of the most likely alternatives to silicon transistors due to its excellent electronic properties. In determining the accurate output drain current of CNTFET, time lapsed and accuracy of different simulation methods were compared. The training data for...
متن کاملan application of artificial neural network to maintenance management
this study shows the usefulness of artificial neural network (ann) in maintenance planning and man-agement. an ann model based on the multi-layer perceptron having three hidden layers and four processing elements per layer was built to predict the expected downtime resulting from a breakdown or a maintenance activity. the model achieved an accuracy of over 70% in predicting the expected downtime.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Materials research proceedings
سال: 2023
ISSN: ['2474-3941', '2474-395X']
DOI: https://doi.org/10.21741/9781644902516-25